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Abstract—Simple algebraic formulae are derived for estimates of the overall thermoelectroelastic
moduli of multiphase fibrous composites with the self-consistent and Mori-Tanaka methods. The
results are formulated with the help of an overall constraint tensor, which can be obtained ana-
lytically by solving a problem for a cylindrical cavity in a piezoelectric medium. It is shown that,
although the two methods are different in nature, their estimates of the effective elastic, piezoelectric
and dielectric constants, as well as the thermal stress tensor and pyroelectric coefficients of the
composite, have a similar structure. In addition, when the phases have equal transverse rigidities in
shear, the overall electroelastic moduli predicted by both methods reproduce the exact solutions for
composites with arbitrary transverse geometry.

1. INTRODUCTION

Piezoelectric composites are an important branch of modern engineering materials, with
wide applications in actuators and sensors in ‘“‘smart” materials and structures. Among
various types of piezocomposites, the rod composite, consisting of long, thin rods of
piezoelectric ceramic in a matrix, was identified as most promising for ultrasonics (Gururaja
et al., 1981). For example, composite sensors containing piezoelectric ceramics rods in a
polymer-based matrix are widely used in hydrophones and medical ultrasonic transducers
with enhanced mechanical performance, electromechanical coupling and acoustic im-
pedance over the original piezoelectric materials. An extensive review of the technological
advantages offered by piezocomposites is given by Smith (1989).

Estimates of overall moduli of piezocomposites in terms of phase moduli, volume
fractions and phase geometry are an important topic in the designing and manufacturing
process. The objective of this paper is to evaluate the overall thermoelectroelastic moduli
of fibrous reinforced composites by the self-consistent and Mori~Tanaka approximations.
Specifically, we consider multiphase composite systems reinforced by aligned circular fibers,
in which the constituents could be transversely isotropic. The derivation is based on the
concept of an ““overall constraint™ tensor, originally devised by Hill (1965a) for an elastic
inclusion. We demonstrate that its analogue in a piezoelectric matrix can be resolved
analytically for a cylindrical cavity. Simple algebraic formulae are given for the effective
electroelastic moduli and thermal stress tensor as well as pyroelectric coefficients. It is found
that, although the two methods are different in nature, their estimates of the ther-
moelectroelastic moduli have a similar structure. In addition, when the phases have equal
transverse shear rigidities, the overall moduli estimated by both methods are identical with
the exact solutions established by Chen (1993a) for composites with arbitrary transverse
geometry.

Recent developments of micromechanical modelling of piezoelectric composites
include the work of Grekov et al. (1989) who assumed that each fiber and its surrounding
cylindrical matrix are located in a medium having effective properties. Wang (1992) exam-
ined the piezoelectric inhomogeneity problem and utilized the solutions in calculating the
effective constants of fibrous composites without considering phase interactions. Getman
and Mol’kov (1992) used an averaging method to study the piezoelectric fibrous composites
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with periodic structures. Dunn and Taya (1993a) evaluated the effective properties of two-
phase composites using dilute, self-consistent, Mori-Tanaka and different micromechanical
models. In addition, results of exact nature regarding piezoelectric composites include the
works of Schulgasser (1992), Benveniste (1993c), Chen (1993b) and Dunn (1994).

A related problem arises in evaluation of the effective thermal stress tensor and
pyroelectric coefficients. Benveniste (1993a) and Dunn (1993a) showed that these tensors
are related to the corresponding isothermal electroelastic moduli in two-phase media. Dunn
(1993b) further evaluated the numerical results by various micromechanics theories. For
multiphase media, Benveniste (1993b) showed that the effective thermal stress and pyro-
electric coefficients follow from a knowledge of the influence functions related to an
electromechanical loading of the composite aggregate.

The plan of the work is as follows. First, we define the composite system and the phase
properties. A summary of most of the present results is given in Section 3. This is followed
by an outline of the methods and their formulations for the considered system. Auxiliary
boundary value problems for the piezoelectric overall constraint tensor are examined in
Section 6.

2. SPECIFICATION OF THE COMPOSITE

We consider a composite medium which consists of a certain number of perfectly
bonded homogeneous piezoelectric phases. The inclusions are of cylindrical shape with
circular section and each of the phases is transversely isotropic about the “fiber” direction
x5 of a Cartesian coordinate system. In the transverse x, x,-plane, the distributions of the
phases can be arbitrary, providing that all such transverse sections are identical and the
composite can be regarded as statistically homogeneous. Overall transverse isotropy about
the x;-axis is assumed for the composite medium. The constitutive relation for linear
piezoelectric materials can be written in the form (Tiersten, 1969)

;= Lijklekl_ekijEk—/lijg

D; = eyeut+xuE—q0, 4))

where ¢ is the stress tensor, g the strain tensor, D the electric displacement vector and E the
electric field. L are the elastic moduli measured in a constant electric field, x are the dielectric
constants measured at constant strain, e are the piezoelectric constants, 4 denotes the
thermal stress tensor, q is the vector of pyroelectric coefficients and 0 is an increase in the
temperature from some reference temperature. The material constants L, e, k are, respec-
tively, fourth-rank, third-rank and second-rank tensors, which satisfy the symmetry
relations

Ljyy=Lj= Ly = Ly, € = €, Kij = Kjie 2)

If u is the displacement vector and ¢ is the electric potential, the strain tensor and electric
field are given by

&y =5 +u), E=—¢, 3)

where the comma followed by an index indicates the derivative with respect to the cor-
responding space coordinate. The stress and electric displacement should satisfy the diver-
gence equations V<6 =0, V-D = 0. Here the body force and the extrinsic charge are
neglected. It is often convenient to write eqn (1) in a matrix notation according to the
scheme 11 =1,22=2,33=3,230r32=4,310r 13 =5, 12 or 21 = 6. Accordingly, eqn
(1) can be written in the form
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or symbolically as ¢ = Lé— 10, where

o,=0y; for m=1-6, i,j=1,2,3

en=¢8; for i=j, m=123; ¢,=2,; for i#j, m=4,56
L,,=Ly, for ijkl=1273 mn=1-6

ew=e, for iLk,1=123 n=1-6

Amw=24y; for m=1-6, i,j=1,2,3 &)

. [e . e . L e ~ [4
o=[o} =) e-e L)l ®

For the considered phase propertles which are transversely 1sotroplc about x;, the consti-
tutive relations can be written in the following form:

and

(o) (k+m k-—m [ 0 0 01 ’8,1 [0 0 ey] (A ]
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5
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where k, I, n, m and p are Hill’s (1964) elastic moduli under a constant electric field, 4, and
A, are the linear thermal stress coefficients in the transverse plane and in the longitudinal
direction, respectively, and g, is the pyroelectric coefficient. The constitutive forms [eqn
(7)] correspond to those of a crystal belonging to the class 6 mm of the hexagonal system,
which represents a wide class of technologically important materials in constructing com-
posite piezoelectrics, e.g. PZT (lead zirconate titanate). A particular form, which will be
useful in what follows, relates the axisymmetric stress and strain invariants of the trans-
versely isotropic medium :

s=ke+le—e, E—A,0
g = Ie+n8'—e33E'—1130
D = e;,e+e336+K33E—q,0

(011 —0622) = 2m(e;; —&33), 012 = 2mey,, ®

in which the strain and stress invariants are defined as
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e=¢g+&,, £=¢33, E=E;

§=(01,+02)2, 6=03, D=D; &)

The remaining constitutive relations involving the three constants p, e, and x,, are linked

by
al|l_[p es ][ €4 ] 0'5:|= P e & | (10)
D, es —Ki || —E; D, es —Ky || —E

In the following analysis we shall conveniently write the (2 x 2) stiffness matrix as L.

3. OUTLINE OF PRESENT RESULTS

We first summarize the main results for the effective thermoelectroelastic properties of
the considered composite system. Derivation of the results will appear in Section 5.

3.1. Self-consistent estimates

We consider a system reinforced by aligned, transversely isotropic fibers (r = 2,3... N)
in a transversely isotropic matrix (r = 1). Many different fiber materials may be admitted
at the same time. The overall thermoelectroelastic moduli of such a system predicted by the
self-consistent scheme are

i crkr i crlr i C,-e'31

r=1kr+m r=1kr+m r=lkr+m
k=N P I=N P €31 =% c an

rgl kr+m 7;1 kr+m r;] kr+m

ﬁ’: cm,
r=1 mr+y 1 2 -1 12
m= % c, » Y= m + E ( )
r=1 mr+y
N ol T
N N o2 [,;1 k,+m]
- rér 13
" r;l et r;l kr+m i C, ( )
r=1 kr+m

i cregl i crlr

y c,l,e3, r=1 kr+m r=1 k,+m
= " — 14
€13 Y; /€33 r; k +m + i c (14)

r=1 kr+m
Y cregl §
K33 = Z] ¢,K33+ . & +m - p (15)
rgl kr+m

i=%[§c,(t,+i)—l]_ . (16)
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Clearly, among the seven effective constants of the composite, &, 1, n, e, €33, K33 and m,
the moduli £ and m should be resolved first. In particular, the knowledge of m will suffice
to determine the other six moduli. Remarkably, when all phases have equal rigidities in
shear, the overall shear modulus is just m itself and these six moduli are exactly the
same expressions with the exact results (Chen, 1993a) for fiber-strengthened piezoelectric
materials with equal shear rigidities in which the transverse geometry could be arbitrary.
Further, it is observed that the remaining three constants p, x,, and ¢, s are independent of
eqns (11)—(15).

We now list the corresponding results [eqns (11)—(15)] for two-phase systems of
technological interest ; the subscripts f and m represent the fiber and matrix, respectively:

k= cikilkn +m) +cukulke+m)  cdi(kn+m)+culu (ke +m) an
T clkntm) tealketm) T ek +m)+ ek +m)
_ mgm(k+2m) +km(cgme+ i) o = €51 (ki +m)+ ceTy (ke +m) as)
T km4(k2m)(egmg om0 ek +m) +cnlke+m)
? ol? cnl,
= Gt et T eAm ket (19
le s e cmeila
ot m 31 €31l Cm€s)
€33 = Cr€33 + (€33 + Frm kf+m k. +m (20)
2 f \2 m \2
K3 = cflc§3+cm}c’3"3-— €31 crlesy) cm{€5) o3

k+m  ki+m knt+m’

We note that the effective moduli &, /, n and m under a constant electric field take the same
forms as those derived by Hill (1965a) and Laws (1974) for purely elastic media. As
discussed therein the estimates can be physically unacceptable when the phase properties
differ considerably. Thus, it follows that this theory in the context of piezoelectricity remains
unreliable under extreme conditions.

We now turn to the effective thermal stress vectors and pyroelectric constants of the
composite. These coefficients can be expressed in terms of the concentration factors related
to an electromechanical loading of the composite aggregate in which no eigenstresses and
polarizations are present. The correspondence is a generalization of Levin’s formula in
thermoelastic composites (Levin, 1967). We shall show later that the results for effective
thermal stress and pyroelectric coefficients of the composite by the self-consistent method
are

¥ ktm B Lo0=h),
r;crkr_i_m 1 '13‘_r; +Zcrk+ 1
N ey —e
=Z "13+ZC(2:+n:1)M- 22)

It can be verified that when piezoelectric coupling is absent, the expressions reduce to those
of Laws (1974, p. 86) for thermoelastic composite media.

3.2. The Mori-Tanaka method

As above, we denote the matrix as » = 1, and the fibers as r = 2,3, ... N. Transverse
isotropy is assumed in all phases, together with alignment of the phase symmetry axes with
x3;. The effective physical constants of such composite predicted by the Mori~Tanaka
method are
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|

r=1

A comparison with those estimated by the self-consistent scheme reveals a structural
similarity between the two approximate procedures (11)-(16) and (23)-(28). A similar

conclusion in the context of elasticity, though in di

fferent expressions, was pointed out by

Dvorak and Benveniste (1992). The principal distinction between the two methods is that

in the self-consistent method, the constant m in the

formulae is the effective shear modulus,

whereas in the Mori-Tanaka method it is replaced by the matrix shear modulus #,. Again,
it is noteworthy that the moduli (23)-(27) are identical with the known exact solutions
{Chen, 1993a) for composites with arbitrary transverse geometry, when the phases have

equal transverse shear moduli.

For two-phase systems, the results are much simpler. We recorded them here for
completeness ; again, the subscripts f and m represent the fiber and matrix, respectively :

cfkf (km + mm) + cmkm (kf + mm)
cf(km + mm) + Cm (kf + mm)

k=

k]

_ Ml +2mp) + kM (€M + CnMy,)
- kmmm + (km + 2mm)(cfmm + cmmf)

b

_ Cflf(km +mm) + lem(kf+ mm)

exlom +71) + € (ke + 71) 9)

_ ceel (ke + M) + Cm€3) (ke + M)
e cf(km + mm) + Cm(kf"" mm)

(30
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2 cl? Cml?
= m - - 31
St e Kttt o 1 3D
le sl cn€Piln
€33 = el +cmes + k+3’; —kf+3r1nf % _:lm 32)
m m m m
e2 c ef 2 ¢ (e™ 2
K = iy O — — 2 r(e31) m(€31) (33)

k+m,  ki+m,  ky+my’

Now, going back to the effective thermal expansion coeflicients and pyroelectric con-
stants of the composite, the coefficients estimated by the Mori-Tanaka method are exactly
the same expressions as eqn (22) except that the parameter m is replaced by m,.

4. EFFECTIVE MODULI OF PIEZOELECTRIC COMPOSITES

A representative volume element V of the composite is chosen such that under homo-
geneous boundary conditions it represents the macroscopic response of the composite. The
phase volume fractions ¢, satisfy Z¢, =1, r =1,2...N. The volume V is subjected to
uniform displacement and electric boundary conditions, and a uniform temperature change
00

u(S) = &x;, ¢(S)=—E’x;, 6(5)=20° 34

where u and ¢ denote the applied displacement and electric potential, &° and E° are constant
strain and electric field, and n is the outside normal to S. The overall elastic, piezoelectric
and dielectric constants of the composite aggregate are defined by

d=Le—e'E°—20, D =es’+xE°—qé, (35)

where & and D denote the volume average stresses and electric displacements in ¥. Under
the boundary condition (34), the local and overall field averages in ¥ are given by

N N N

N
£=Yce E=)YCcE, 6=) cg, D=3 ¢D, (36)

r=1 r=1 r=1 r=1

To evaluate the overall moduli of the composite aggregate, it is often convenient to introduce
the phase volume averages § = A,é° so that the overall moduli L. follows as L = £ ¢,L,A,,
where A, is referred to as concentration factors.

In the evaluation of the concentration factors by the self-consistent scheme, each
inclusion is regarded as a solitary inhomogeneity embedded in an infinite effective medium
under a remotely applied boundary condition £°x. For an ellipsoidal inclusion, the local
fields in the solitary inhomogeneity are uniform (Wang, 1992 ; Benveniste, 1992) and the
concentration factor A, can be expressed by

Ar== [i+S]:_l(er—f‘)]—l’ (37)

where 1 is a unit diagonal (9 x9) matrix and S is the equivalent Eshelby tensor which
depends only on the shape of the inclusion and on the properties of the surrounding matrix.
An integral form of $ for ellipsoidal inclusions was recently formulated by Chen (1993c).
In particular, when the inclusion is in the shape of a circular cylinder in a transversely
isotropic matrix, Dunn and Taya (1993a) gave explicit formulae for S. Its nonvanishing
terms are recorded as
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6k+4m 2k—4m !
Sn—Sn g(ma S12"52x=ma SB:Su:E(k—I-—m)’
k+2m 1
66 m—), Saq = 855 = 877 = S = 5 (38)

The components in eqn (38) are written according to the notation (5) [see also Chen
(1993d)]. Alternatively, one may write eqn (37) in terms of an equivalent “overall con-
straint” tensor L*, the piezoelectric analogue of constraint modulus (Hill, 1965b), which
relates the uniform fields in the inclusion r to the uniform fields ¢° and £° as

6,—6° = L*(€°—§) orequivalently A, = (L*+L,) '(L*+L). (39)

Similarly, one may define an overall constraint M*, the inverse of L.*, by reversing expression
(39). In the following analysis we shall employ this approach to derive the dilute con-
centration factor. The solutions for L.* or M* can be obtained by solving boundary value
problems for a uniform strained infinite medium containing a cavity. A description of the
procedures for the overall constraint compliance for a cylindrical cavity in a transversely
isotropic piezoelectric matrix is given in Section 6. The nonvanishing terms of the overall
constraint M* are obtained as

/1 1 11 1 2
M’x“):M?z:i(;%*%), M’,“2=M§"l=_§%, M&:;_‘_E
[M:ﬁ M3y _ M3 M's"7] _| P es -1 @0
M8*4 M?g M#s M% e1s —Kjp, )

Now turning to the Mori-Tanaka estimate, the concentration factor is obtained by
the assumption that each inclusion is regarded as a solitary inhomogeneity embedded in an
infinite matrix material under a remotely applied field equal to the matrix average &, or 4,.
Consequently, similar to that of elasticity, the concentration factor can be derived as

N -1
A= T[ 5 c,T,] = Rr+L) Ert L), @n

r=1{

The fundamentals of the two approximate methods are fairly well known in the context of
mechanical properties. Their extension to elastoelectric moduli is straightforward and thus
complete descriptions are not presented here. For a detailed exposition of the methods, the
reader is referred to the works of Dvorak and Benveniste (1992) and Dunn and Taya
(1993a).

The effective thermal stress and pyroelectric coefficients are also important physical
properties of piezoelectric composites. These coeflicients can be derived from the virtual
work theorems in piezoelectric media (Benveniste, 1993b) which follow a direct extension
of Rosen and Hashin (1970) in deriving the effective thermal expansion coefficients for
elastic composite media. In particular, according to our definition of the concentration
factor, the results derived by Benveniste [1993b, eqn (13)] can be recast as

i=Y AT, (42)

M=

[l

r

which has a similar structure with the effective thermal stress tensor of composites derived
by Levin (1967) and Rosen and Hashin (1970).
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5. COMPOSITES REINFORCED BY ALIGNED FIBERS

We now proceed to derive the results which were summarized in Section 3. First we
derive the results by the self-consistent method. Consider a single fiber in an infinite effective
medium subjected to a transverse shear strain 2¢ on its outside boundary. In this dilute
configuration, it is obvious that the local and overall quantities are related, according to
eqns (39) and (40), as t,—1 = 2y(¢—¢,), where 7, and ¢, represent the transverse shear stress
and strain in the phase r, respectively. From the phase constitutive relation (8),, one finds
that t,/t = [m,(m+7y)])/[m(m,+y)]. Consequently, by the average theorem of strain [eqn
(36),], the effective transverse shear modulus m can be derived as

1 _i c, @3)
m+y_r=lmr+y.

Next, consider a pure lateral dilatation without longitudinal straining or electric loading,
ie.e#0,e=0, E=0. The overall behavior is thus reduced to § = ke, & = le, D = e;,e.
From eqns (39) and (40), the corresponding equation for the constraint modulus is
s,—s = m(e—e,), which implies that s,/s = [k,(k+m)]/[k(k.+m)], and hence the effective
moduli &, / and e;, can be found as

1 _i ¢ l _” ¢, €3 _ice“
k+m “k+m k+m Sk+m k4+4m “k+m

(44)

Some algebra will show that eqns (43) and (44) are equivalent to the formulae given in
eqns (11) and (12).

To find the effective moduli n and e;;, we consider an overall uniaxial straining without
lateral contraction, or electric loading, i.e. ¢ # 0, e = E = 0. For evaluation of the modulus
K33, we assume an overall loading of E # 0, e = ¢ = 0. In addition to eqns (36) and
(40), in multiphase systems two additional conditions are needed for evaluation of these
constants, namely the quantities of e,/e and e,/E. This can be accomplished either by
solving appropriate boundary value problems or by direct expansion of eqn (39). In either
approach, the results can be shown as

e, -1 e, €3 —ey
e m+m.’ E m+k (45)

Accordingly, the effective moduli #, e;; and k33 can be derived in the forms given by eqns
(13)—(15). The remaining three effective moduli p, ¢, 5 and k,; are coupled and independent
of the other seven constants. Their evaluation procedures follow a standard formulation
which involves the substitution of eqn (39) into L = X ¢,LA,. Some algebra will show that
these three effective constants of the composite estimated by the self-consistent method are

f= [f c,(i,+i*)_1:l_ —ix (46)

=1

Since in the present loading conditions L.* is equal to L, the overall moduli L. is thus reduced
to eqn (16).

We now derive the effective moduli by the Mori-Tanaka method. As mentioned
previously, the method regards each inclusion as a solitary inhomogeneity embedded in an
infinite matrix material under a remotely applied quantity equal to the matrix average £,.
The formulation for the effective properties mainly follows the routes described in the self-
consistent scheme except that the overall strain or electric field is replaced by the matrix
average §,, while the quantity & can be obtained from the identity (36), and (36),. The
derivation is similar to that of the self-consistent method described above. For a detailed
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illustration of the procedures, the reader is referred to the work of Chen et al. (1992) who
derived the effective elastic moduli of multiphase composites by the Mori-Tanaka method.

In view of the results given in egns (11)—(16) and (23)—(28), it is seen that the effective
elastic moduli &, /, n and m are independent of piezoelectric coupling, however, the effective
dielectric constants appear to be functions of both elastic and piezoelectric coefficients of
the phases. This is not a surprising outcome. In fact, one can recognize this effect directly
from the constitutive relations (8). For example, as described above, the effective modulus
k is defined to be the ratio of average stress (6,,+0,,)/2 in the medium divided by an
applied dilatational strain e. The overall electric field E; (and hence throughout the whole
medium) can, however, be set equal to zero at will. Thus, the constant k is independent of
piezoelectric coefficients. Similar arguments apply to /, m and n. On the other hand, an
overall loading of E # 0, e = ¢ = 0, will induce not only D but also s and ¢ in the medium.
Accordingly, the effective k,; is a function of dielectric, piezoelectric and elastic constants
as well. Further, by simple algebra it can be shown that the effective elastic constants k, /,
n and m are exactly the same as those for the uncoupled elastic composites (Chen et al.,
1992). However, the effective constant p is coupled with x,, and e, s as indicated in eqns
(16) and (28).

The derivation of the effective thermal stress tensor and pyroelectric coefficients mainly
depends on the solutions of A,. In particular, from the previous formulations, the con-
centration factor can be expressed as

€ Ay A A€
el =14y Ay Ap||| Y]
E r A31 A32 A33 r EO

When the self-consistent approximation is assumed, the nonvanishing components of the
concentration factor are

k+m l—l,, 331”631

mik’ n2=——> A= mik Ay =433 =1, (48)

Ay =

whereas the Mori-Tanaka assumption provides

k+m i—1 ey —e
ha l, Ay =——"7, Ala—“s'l““‘“‘s’l

. ——— — , =A —_-1_
m, +k, m, +k, m, +k, Az = 4ss “9)

6. THE OVERALL PIEZOELECTRIC CONSTRAINT TENSOR

The overall constraint compliance quoted in eqn (40) will now be justified. We consider
a homogeneous medium containing a cylindrical cavity with its axis parallel to the x;-axis,
where the constitutive equation of the matrix is given in eqn (7). On the cavity surface, the
traction vector and the normal component of electric displacement are zero. We first
consider a loading case involving the three constants p, e, and k. It can be easily verified
that, for a cylindrical cavity in a transversely isotropic matrix, the medium admits a two-
dimensional elastic and electric field characterized by

w =u, =E; =0, u;=u(r0), ¢=a¢(0), (50)

so that the corresponding nonvanishing stress and electric displacement are
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_ w09 _ 1ou 10¢
O =P teisp  Te =P Uga e 50

Ou 0 1 du 10
Dr=6’155"€n'{$s Do=els;%—'€11;a—(£- (51)

Since 0;,; = D, ; = 0, it can be readily shown that the displacement u and electric potential
¢ satisfy the Laplace equation V?u = V?¢ = 0. By separation of variables, the admissible
displacement and electric potential in the medium can be expressed as

U= (Ar+ g) sinf, ¢ = (Cr+ ?) sin 6. (52)

The boundary conditions to be satisfied are the vanishing of traction and normal component
of electric displacement on the cavity surface, together with the imposed boundary con-
ditions at infinity. These conditions provide the equations for evaluation of the four
unknown constants 4, B, C and D, which can be easily solved analytically. In derivation
of L*, it is convenient to apply the following two boundary conditions separately :

U, =&°rsinG, ¢l =0, u,,0 =0, ¢, =—E°rsiné. (53)

Once the constants are determined, we can evaluate the average strain and electric field in
the cavity. Thus, by the definition of eqn (39), the component in eqn (40), can then be
obtained.

We turn to the constraint compliance for the plane transverse strain. For the present
purpose it is enough to consider a medium with a cavity under a homogeneous boundary
condition o, = 6°, 6, =0, g; = 0 and D, = 0 applied at infinity. Under this loading con-
dition the field is independent of x;, which implies that E; = &; = 0. Thus the local fields
in the matrix reduce to

o, = (k+m)e; +(k—m)e,, 0, =(k—me,+k+m)e,, o;=1I,+¢&), o6¢=me
D, =k, E\, D,=kK,E;,, D;=e;(s+e,). (54)

In view of the field eqns (54) and the boundary condition it is obvious that the elastic fields
associated with the auxiliary boundary value problem are exactly the same as those for
purely elastic material. Accordingly, the derivations for the corresponding constraint com-
pliance follow the same procedures illustrated by Hill (1965a). This will provide the com-
ponents listed in eqn (40),. It should be noted that the components M¥,, M¥,... M%, are
all identical to zero, since Ej = E; =0. Likewise, & =¢; =0, so it follows that
M¥ =M% = = M¥ = 0. We now complete the derivation procedure of the constraint
compliance for a circular cylindrical inclusion in a transversely isotropic piezoelectric
medium.

An analogous boundary value problem in which the cavity is substituted by a different
material could also be resolved in a similar manner. In particular, this will provide the
solutions of the dilute concentration factor listed in eqns (48) and (49). We mention that
the procedures described could be verified by an alternative approach via eqn (37), which
involves the use of the equivalent Eshelby tensor [eqn (38)]. Again, it is stressed that the
present formulation using the overall constraint tensor is an alternative approach for the
solution of the inclusion problem. For a detailed description of L*, one can refer to the
celebrated work of Hill (1965b).

7. CONCLUDING REMARKS

Recently, Nan (1993) developed a general theoretical framework for the determination
of the effective properties of piezoelectric composites following the multiple scattering
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scheme. As an example, he gave explicit first-order estimates (average f-matrix approxi-
mation) for the effective properties of binary transversely isotropic fibrous composites, in
which the matrix is isotropic (non-piezoelectric). It is surprising to find that their estimates
of k, I, m and e;, are identical with those predicted by the Mori-Tanaka method [eqns (29)
and (30)]. However, the remaining physical constants are different. We notice that, by
numerical evaluations, their results [Nan (1993); eqn (4)] do not completely satisfy the
exact universal relationships (Schulgasser, 1992) between the effective constants.

We finally remark that both the self-consistent and Mori-Tanaka theories provide
estimates which are admissible if the effective constants are diagonally symmetric and self-
consistent. Dunn and Taya (1993b) have proven that the Mori-Tanaka theory is on strong
footing for two-phase piezocomposites with aligned inclusions. Whether these requirements
are fulfilled for various kinds of multicomponent composites remains to be established.
However, based on our previous work (Chen et al., 1992) and the analogy between the
elastic and piezoelectric composites, we would point out that the effective properties for the
considered system can be expressed as

i- [ﬁ c,(£,+£r)-‘]_l—£r (55)

r=1

for the Mori-Tanaka method. A similar equation can be slightly modified for the self-
consistent approximation. We thus conclude that the results still hold for multiphase
systems where all inclusions have the same shape and alignment. Also, to further examine
the validity of the results, the effective constants need to be bracketed by available vari-
ational bounds. In fact, to the author’s knowledge, rigorous bounds have yet to be developed
for the effective properties of piezocomposites. Nevertheless, in this particular system, the
electrical state of the medium does not affect the transverse shear modulus. Hence, the
effective shear modulus and its variational bounds are exactly the same as those for the
purely elastic media.
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